Effects of innovative virtual reality game and EMG biofeedback on neuromotor control in cerebral palsy.

نویسندگان

  • Ji Won Yoo
  • Dong Ryul Lee
  • Yon Ju Sim
  • Joshua H You
  • Cheol J Kim
چکیده

Sensorimotor control dysfunction or dyskinesia is a hallmark of neuromuscular impairment in children with cerebral palsy (CP), and is often implicated in reaching and grasping deficiencies due to a neuromuscular imbalance between the triceps and biceps. To mitigate such muscle imbalances, an innovative electromyography (EMG)-virtual reality (VR) biofeedback system were designed to provide accurate information about muscle activation and motivation. However, the clinical efficacy of this approach has not yet been determined in children with CP. The purpose of this study was to investigate the effectiveness of a combined EMG biofeedback and VR (EMG-VR biofeedback) intervention system to improve muscle imbalance between triceps and biceps during reaching movements in children with spastic CP. Raw EMG signals were recorded at a sampling rate of 1,000 Hz, band-pass filtered between 20-450 Hz, and notch-filtered at 60 Hz during elbow flexion and extension movements. EMG data were then processed using MyoResearch Master Edition 1.08 XP software. All participants underwent both interventions consisting of the EMG-VR biofeedback combination and EMG biofeedback alone. EMG analysis resulted in improved muscle activation in the underactive triceps while decreasing overactive or hypertonic biceps in the EMG-VR biofeedback compared with EMG biofeedback. The muscle imbalance ratio between the triceps and biceps was consistently improved. The present study is the first clinical trial to provide evidence for the additive benefits of VR intervention for enhancing the upper limb function of children with spastic CP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Usability and Efficiency Human-Computer Interface in Cervical Spinal Cord injury by Game-based Electromyography Biofeedback and EMG Biofeedback

Background and Aims: The purpose of this study was to compare the efficacy and usability of human-computer interface in cervical spinal cord injury with two computer games based and EMG biofeedback. Methods: The sample size was 20 participants (healthy and spinal cervical lesions) who were selected as available. The statistical population of the study was spinal cord injury patients referred t...

متن کامل

تأثیر بازی‌های حسی-حرکتی در محیط مجازی بر هماهنگی چشم و دست کودکان مبتلا به فلج مغزی همی پلژی

Background and Objective: Virtual reality is a computerized technology with virtual environment and objects, which people manipulate virtual environment voluntarily through active participation. Aim of the present study was to determine the effect of sensorimotor play in virtual environment on eye-hand coordination of children with hemiplegic cerebral palsy. Materials and Methods: In this singl...

متن کامل

The Effect of Virtual Reality Practice on Postural Control and Balance in Children With Cerebral Palsy: A Single-Subject Study

Objectives: Virtual reality is a new technology that has been recently used for different purposes in the rehabilitation of children. This study aimed to investigate the effectiveness of this method in balance rehabilitation of children with Cerebral Palsy (CP). Methods: This was an A-B-A design single subject study in which 3 children with hemiplegic CP participated. The baseline phase and in...

متن کامل

Management of Synkinesis and Asymmetry in Facial Nerve Palsy: A Review Article

Introduction: The important sequelae of facial nerve palsy are synkinesis, asymmetry, hypertension and contracture; all of which have psychosocial effects on patients. Synkinesis due to mal regeneration causes involuntary movements during a voluntary movement. Previous studies have advocated treatment using physiotherapy modalities alone or with exercise therapy, but no consensus exists on the ...

متن کامل

EMG-based vibro-tactile biofeedback improves motor control in children with secondary dystonia: two case reports

To tackle the limits of the literature investigating biofeedback training in children with secondary dystonia, the current study employs a wearable and silent EMG-based biofeedback device that aims at improving control over the impaired muscle by providing the patient with a vibration proportional to muscle activation. The device is tested on two children with secondary dystonia due to dyskinet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bio-medical materials and engineering

دوره 24 6  شماره 

صفحات  -

تاریخ انتشار 2014